
1 4 P H A R M A C E U T I C A L E N G I N E E R I N G

This article explores life-cycle activities for
machine learning (ML) within regulated life
sciences. It positions and contextualizes the life
cycle and management of the ML subsystem or
components within a wider system life cycle. It
also gives general descriptions and guidance
illustrated by a case study demonstrating a ML
application to medical image recognition, or
software as a medical device (SaMD) [1].

T
his article focuses on the ML component or subsystem embed-
ded within the wider system, solution, or application. It is not
intended to be a general primer or introduction to artificial

intelligence (AI) or ML, nor an introduction to general computer
validation and/or life-cycle activities.

ML is a subdiscipline of AI. An ML system builds a predictive
model from input (i.e., training) data, and uses the learned model
to make useful predictions from new, never-before-seen data.

For most systems that use ML, many aspects of the traditional
computerized system life cycle, and compliance and validation
approach, are still fully applicable (e.g., those related to speci� ca-
tion and veri� cation of user interface, reporting, security, access
control, data integrity, and data life-cycle management).

The use of the term ML component is not intended to suggest
that such a component is a single entity. In most cases, the ML
component will typically consist of several subcomponents com-
prising a “pipeline” supporting a number of functional stages,
such as input/data preparation or output/results � ltering, and one
or more central ML “engine” or model(s) connected together. In
such cases, the term ML subsystem is the most appropriate. The
authors strongly encourage the use of appropriate so� ware auto-
mation and other tools to develop and manage both the ML subsys-
tem and the broader, overarching system, solution, or application.
This article also seeks to avoid the implication that new documen-
tation deliverables are necessary, unless they are clearly required

by regulations (for example, in some cases of SaMD where device
requirements, user needs analysis, human factors evaluations,
clinical trials, and regulatory submission need to be considered),
or such deliverables are clearly bene� cial to the reliability, main-
tainability, and/or quality of the operational system and its � tness
for intended use. (See the sidebar for other key de� nitions.)

Operational ML subsystems provide di� erent outputs as they
evolve, but the veri� cation and validation of the system should be
kept updated in line with these changes. This must include appro-
priate change management, version control, and monitoring. In
addition, some ML systems have stochastic elements (having a
random probability distribution or pattern), which means that
results will be different for identical inputs regardless of model
training. Therefore, validation and verification must use a
sufficiently large validation data set and calculating summary
performance measures that are meaningful and representative of
the overall system performance and robust to small output varia-
tions between successive runs.

PREREQUISITES AND CONTEXT
There are many similarities in best practices between ML and
more traditional algorithmic programming. Successful imple-
mentation of ML requires good business analysis and process
understanding by data scientists, effective planning, and the
application of good software development, engineering, and
maintenance practices. The business case and intended use must
be fully understood to best select the right data and data manage-
ment must be supported by a mature data governance strategy.

Performance metrics are important in the design of any ML
subsystem. They de� ne what output(s) will be generated and how
they will be evaluated against the required or expected results to
determine the ML performance. These metrics drive the iterative
training, evaluation, and improvement stages that are inherent
within the development of all ML systems, as described in the
project/production phase.

Another key aspect of ML development is the tight integration
of data and metadata into the development process. The term

COVER STORY GAMP ® AND MACHINE LE ARNING

APPLYING GAMP® CONCEPTS
to Machine Learning
By Eric Staib, Tomos Gwyn Williams, PhD, and Siôn Wyn

J A N U A R Y/ F E B R U A R Y 2 0 2 3 1 5

data-centric development is sometimes used to re� ect this. As a
result, data should be managed with utmost care, including con-
trols for data acquisition, selection, classi� cation, cleansing, and
augmentation.

As with other so� ware system development, ML development
has business, technical, and project risk activities commensurate
with the complexity and novelty of the system. Managing these
risks require good process/business analysis, risk analysis, and
cost/benefit analysis at all stages of development to recognize
issues and decide whether to take mitigating or rectifying steps, or
to terminate the project.

Development planning requires consideration of human fac-
tors or bias, privacy, security, and legal liability. This requires
transparency and an understanding for the ability to reproduce
outcomes, adequately interpret the results, and understand the
applicability for how models will be applied.

The level of risk depends on the intended use. The extent,
rigor, and documentation of validation and controls should take
into account factors such as the level of human involvement, the
signi� cance of information to the healthcare decision (to treat or
diagnose, to drive clinical management, or to inform clinical
management), and the healthcare situation or condition, (critical,
serious, or nonserious).

The ISPE GAMP® Records and Data Integrity Good Practice
Guide: Data Integrity by Design [2], Appendix S1: A rtificial
Intelligence: Machine Learning, identifies the life cycle of data
within a ML framework, emphasizing the link to both the GAMP
data life cycle and GAMP system life cycle. Wider data integrity
(DI) topics are also discussed in the guide.

ML SUBSYSTEM LIFE-CYCLE OVERVIEW
The following is an overview of the life-cycle model for the ML
subsystem (see Figure 1). Phase terminology consistent with the
GAMP 5 overall system life cycle is used including concept,
project/production, and operation. A case study follows that pre-
sents the speci� c life-cycle activities for a SaMD product. For con-
sistency with the GAMP® Good Practice Guide: A Risk-Based
Approach to Regulated Mobile Applications [1], phase terminology
includes project and production.

I n the concept phase, the business need or opportunity is
identi� ed, clari� ed, and agreed upon. The speci� c problem to be
solved is defined. The initial data is identified (it may be from a
data warehouse or data lake), selected, and prepared as “case
data.” Prototyping allows the assessment and selection of suitable
algorithms and hyperparameters, and preliminary hyperparame-
ter values used to control the learning process. Examples are vari-
ables that determine the network structure, such as number of
hidden units, and variables that determine how the network is
trained, such as the learning rate. Data management begins in this
phase when the case data is originally collected.

During the project/production phase, following a defined
plan, the selected technologies and technical architecture are
de� ned. Formal risk management activities commence, as well as
other supporting activities, including project-based con� guration
and change management. Project/production phase activities for
the ML subsystem are typically iterative and incremental rather
than linear. These iterative activities include model design/selec-
tion, engineering, model training, testing, evaluation, and hyper-
parameter tuning.

Figure 1: ML subsystem life cycle.

Iden�fyIden�fy

1 6 P H A R M A C E U T I C A L E N G I N E E R I N G

Data management is another key project/
production phase activity, including the acquisi-
tion of new data, secure storage and handling,
preparation (including labeling), and partitioning
of data into training and validation data sets.
During the model development stages, the train-
ing data set is used to train the model, and the vali-
dation data set is used to provide an unbiased
evaluation of the model while tuning the model’s
hyperparameters. In certain scenarios, such as
cross-validation experiments, specific data sets
may ful� ll the role of training and validation but
not in the same iteration of the experiment. The
test data set is excluded from all training and
hyperparameter tuning activities; instead it is
used to provide an unbiased evaluation of the � nal
model within the overarching system. There is
usually integration of the ML component into the
wider computerized system and deployment into
the target or other environment where acceptance
and release activities are performed using the test
data set.

In the operation phase, the system performance
is monitored and evaluated. As new (live) data
becomes available, further configuration/coding,
tuning, training, testing, and evaluation are per-
formed. There is likely to be a tight and iterative
loop of alternating production and operation activi-
ties as the availability of new data and ongoing per-
formance evaluation and quality checks lead to
opportunities for improved performance, both pro-
active and reactive, or changing scope of use. This
requires e� ective change and con� guration man-
agement applied to all constituents of the ML sys-
tem, such as code, the data, and models.

ML SUBSYSTEM LIFE-CYCLE PHASES
The following sections describe and discuss the
typical activities conducted during the ML sub-
system life cycle and are supported by an illustra-
tive case study example [3] at the end of the
article.

Concept Phase
The objective of this phase is to provide insight
into the expected development cost and opera-
tional benefits of a ML subsystem. This should
include a decision or rationale on why a ML solu-
tion shall be incorporated. This phase also pro-
vides opportunities to research and investigate
which ML algorithms should be considered for
development based on cost, development risks,
and expected performance. This phase a lso

Defi nitions
Artifi cial intelligence (AI): a system that displays intelligent
behavior by analyzing its environment and taking actions (with
some degree of autonomy) to achieve specifi c goals. AI-based
systems can be purely software-based, acting in the virtual
space, or can be embedded in hardware devices. As a scientifi c
discipline, AI includes several approaches and techniques, such
as machine learning (of which deep learning and reinforcement
learning are specifi c examples), machine reasoning (which
includes planning, scheduling, knowledge representation and
reasoning, search, and optimization), and robotics (which includes
control, perception, sensors, and actuators, as well as the
integration of all other techniques into cyber-physical systems).

Machine learning (ML): a subdiscipline of AI and a program or
system that builds (trains) a predictive model from input data
(such as training data). The system uses the learned model to
make useful predictions from new data drawn from the same
distribution as the one used to train the model.

Deep learning: also known as deep structured learning or
convolutional neural networks (CNNs), it is a part of a family of
machine learning methods based on artifi cial neural networks
with representation learning.

Random forest: a ML technique used to solve regression and
classifi cation problems.

Case data: data that is strategically selected to be unbiased
and representative of the types of information to be processed
by the ML, used for selection of training and validation
samples/subsets.

Training data: a sample and/or subset of data, used for
learning, to fi t the model parameters of the model/classifi er.

Validation data: a sample or subset of data used during model
training and tuning to evaluate the model. The data provides
evaluation independent of the training data, but not completely
independent of the model training process. In data science
and AI/ML, validation is used di� erently in GxP computerized
systems.

Test data: a sample and/or subset of data excluded from all
training, tuning, and validation activities, reserved to assess
and evaluate the performance of a fully specifi ed model/
classifi er.

Gold standard/“ground truth”: a set of results that serves as
the approved external criterion in which the model/classifi er
output is ultimately evaluated and/or compared against.

COVER STORY GAMP ® AND MACHINE LE ARNING

J A N U A R Y/ F E B R U A R Y 2 0 2 3 1 7

include e� orts in gathering initial case data and understanding
the properties of that data.

Identify business need and opportunity
The business need is developed and analyzed, the overall process
and work� ow are de� ned and agreed upon, and how the proposed
application will support the process is identi� ed. This analysis will
help determine constraints, such as availability of data, deployment
hardware, legal liability, and regulatory and intellectual property
(IP) factors. Detailed data-related factors such as source, structure,
format, and segmentation should also be considered.

Problem defi nition
At this stage, the initial set of requirements may be speci� ed. This ini-
tial “requirements speci� cation” drives the development and de� nes
the functionality required from the system and ML subsystem.

Nonfunctional requirements such as integration and deploy-
ment constraints should also be considered at this early stage to
inform the choice of ML algorithms. Nonfunctional requirements
include an initial set of performance metrics. These are a detailed
description of the ML subsystem output and how these outputs
will be compared to the defined expectations. This comparison
will provide quantitative measures of how well the subsystem
performs. These measurements drive the training, evaluation,
and tuning of the ML subsystem models. The performance metrics
may change during development, training, and retraining. Other
nonfunctional requirements include deployment constraints,
such as choice of hardware, and performance constraints such as
speed and/or capacity.

Prototyping
ML projects can bene� t signi� cantly from deploying algorithms
and techniques developed for and applied to other applications
and use cases. The objective of this stage is to conduct research
and initial prototyping to identify which algorithms and resources
are most likely to result in successful delivery of the project.

The ML � eld has a varied and growing range of algorithms and
model architectures to choose from, and within each algorithm
there are numerous hyperparameters to tune. For a new system, it is
unlikely that the choice of algorithm is so clear-cut that a decision
can be made to fully specify the component and proceed to develop-
ment at this stage. In order to decide which algorithm is most suita-
ble and how it should be trained and evaluated, the candidates
should be evaluated against the operational, performance, and, if
relevant, regulatory requirements. These activities provide an early
indication of the likely predictive performance of the model and
how likely the system is to achieve that level of performance.

Data acquisition and selection
An initial set of data will be collected from the existing business
activities, or need to be gathered, to provide a starting point for the
prototyping. Once identified, this stage determines what is
required to prepare the data for the training and evaluation of the

models, including formatting, cleaning, and feature extraction
(collectively referred to as data transformation). It is also likely
that the data needs to be labeled to provide the training inputs
from which the prototype subsystem will be evaluated. At this
phase, it is not expected that the data be complete because subse-
quent stages will identify if there is a need for additional data and
the plan for acquiring and labeling that data. It is, however, impor-
tant to partition the case data into training and validation sets to
avoid compromising future evaluations. Training data may
include biased human decisions or re� ect inequalities, or bias may
be introduced by � awed data sampling, in which groups or classes
are over- or underrepresented in the training data. Appropriate
measures should be applied to control the risk of such bias.

Project/Production Phase
The output from this phase is an implementation of the ML sub-
system integrated into the overarching IT system together with
extensive performance evaluation measures. Integral to this is the
development of the training and performance evaluation infra-
structure that supports training, tuning, and evaluation of the
models. Tools supporting model construction or data preparation
may also be developed during this phase (such as tools that sup-
port labeling of the training data).

This phase follows an iterative approach where successive
versions of the ML subsystem are specified, designed/selected,
implemented, trained, tuned, and evaluated. The phase consists of
a series of experiments that iteratively improves the design,
implementation, and hyperparameter selection of the subsystem
to optimize performance.

Project data management
Prior to the project/production phase kickoff, it must be deter-
mined if the case data ful� lls the requirements of the project life
cycle: for instance, that there is a su� cient amount of data to train
the model and a data range that encompasses the expected real-
world data. If this is not the case, additional data will be needed,
which may require a separate data acquisition project. This phase
also determines the appropriateness of the data for intended use,
and prepares it for subsystem development. Activities include
format specification, selection, and application tools for data
annotation and clean up.

The extent and format required for the data is driven by the
performance metrics previously obtained. For example, for the
task of image analysis object localization, the performance metric
is speci� ed as the agreement between the ground truth and results
predicted by the AI. The ground truth is the set of results that
serves as the approved external criterion in which the model/
classi� er output is ultimately evaluated and/or compared against.
To achieve this, the ground truth data and AI output must be in a
comparable form that will enable that measurement to be made
(for instance, by image segmentation). For a classification task,
simple labeling of an image as containing a particular feature may
be su� cient.

1 8 P H A R M A C E U T I C A L E N G I N E E R I N G

Model requirements specifi cation
This stage may be considered a “tollgate” in the project/produc-
tion phase, where information gained from the previous phase
is documented and presented together with informed and
detailed planning for the project/production phase. The objec-
tive is to provide information on the likely cost, risks, and bene-
� ts of the ML subsystem to inform a decision on whether or not
to continue. The information presented during this stage pro-
vides confidence that the additional investment required in
data acquisition, management, and development will deliver
the business need.

The information and experience gained during the concept
phase are utilized at the start of the project/production phase to
specify and design the ML subsystem to as much certainty as pos-
sible and allow for the planning e� ort, including risk estimation,
of its delivery. Activities in this stage include formulating the ini-
tial design of the subsystem by identifying the main components
and how they will integrate to perform the analysis. Design deci-
sions rely heavily on the practical experience gained in developing
the prototype solutions in the previous phase. In addition, the
speci� cation of the subsystem is formed, which includes the for-
mat of the input and output data for the subsystem and the de� ni-
tion of performance metrics.

Planning involves detailed breakdowns of the development
e� ort with estimates of timelines and associated risks. Risk anal-
ysis of the project can be performed during this stage to determine
the items most likely to fail and provide for appropriate mitigating
actions or alternative solutions to reduce risk. Planning also
includes the speci� cation of the development environment for the
ML subsystem, which will have its own budgetary implications in
the form of software licenses and computing and storage
resources. The development operations and hardware infrastruc-
ture are set up to support the ML component training and
evaluation. These may include code and data version-controlled
repositories, applying any combination of local and cloud-based
computation. This phase may use a research-focused language
and platform, but should also take into consideration the end
deployment requirements and platform to ensure that there are no
subsequent technical or IP infringement issues.

Model design and selection
The baseline architecture of the ML model is chosen and designed
during this stage. Knowledge gained from the prototyping phase
is applied here to identify the single or small number of candidate
algorithms identi� ed as being most likely able to ful� ll the model
requirements, both functional and nonfunctional (such as perfor-
mance). The requirements can be su� ciently broad to allow the
selection of models across different ML algorithm classes. D ata
scientists should be wary of choosing too many candidate algo-
rithms at this stage since the e� ort required to optimize each can
be significant. If the number of candidate algorithms is greater
than three, the scientists may wish to return to the prototyping
stage to eliminate some to avoid excessive optimization.

The choice of the underlying ML algorithm leads to the set of
hyperparameters for each model. Subsequent iterations of the devel-
opment process re� ne the architecture driven by model test results.

Model/data engineering
This stage involves constructing the model architectures and the
surrounding infrastructure for data input and evaluation that
enables training and hyperparameter tuning of the models. Tasks
include selecting, preparing, managing, and maintaining the data
for training iterations and recording results to allow comparison
between trials of di� erent hyperparameters and results from dif-
ferent versions of the architecture. Once set up, the infrastructure
is then employed to execute a series of trials in which the model
hyperparameters are altered to determine the set of parameters
that result in the best model performance.

Model training and hyperparameter optimization
This stage involves training a series of model instances by varying
hyperparameter values (e.g., the number of hidden units or learning
rate) and recording the results. Hyperparameter optimization may
involve manual selection and altering the parameters after each
iteration, or automated processes using exhaustive search or the
more e� cient Bayesian optimization of the hyperparameter space.

Most ML algorithms possess many hyperparameters and
hence define a large hyperparameter space over which to opti-
mize. However, applying knowledge of the algorithm and problem
domain gained during the prototype phase allows data scientists
to identify the subset of hyperparameters whose values can be
predetermined and fixed, thus greatly reducing the parameter
space. Though libraries and infrastructures exist that allow for
automated hyperparameter tuning, data scientists are advised not
to take a completely hands-o� approach to hyperparameter tun-
ing. Dividing the hyperparameter search space experiments into
smaller regions by allowing only a subset of the hyperparameters
to optimize for each experiment run can provide useful insights
on the effect hyperparameters have on the model training and
performance, leading to a more e� cient tuning stage.

The output from this stage is a trained model using all the train-
ing data and an optimal, or near-optimal, set of hyperparameters.
This is considered the best model given the existing � xed architec-
ture and parameters evaluated using the validation data. The itera-
tion of model design to model engineering to hyperparameter tun-
ing to model training to model evaluation reveals insights into the
performance of the latest and previous models. This yields further
evidence as to how the model architecture and training options may
be altered to improve the performance and then a redesign or selec-
tion of an alternative model may be performed and evaluated.

Evaluation and model testing
This is when the best-performing models from the previous train-
ing and selection iteration are subjected to the validation data.
Excluded from the training of the previous iteration, the valida-
tion data is passed t hrough t he model(s) and t he model’s

COVER STORY GAMP ® AND MACHINE LE ARNING

J A N U A R Y/ F E B R U A R Y 2 0 2 3 1 9

performance is evaluated. A key requirement for a fair comparison
is to apply identical training and validation data sets to each candi-
date model. The results are compared to the gold standard labeling
to produce a set of aggregate and indicative performance metrics,
or scorecards, which inform on the current performance and drive
the following iteration if required.

Many ML libraries incorporate the validation data evaluation
into their training functions, thus automating much of this pro-
cess. Data scientists, however, should be wary of relying on the
quantitative measures for model evaluation. Visual qualitative
evaluation of the validation results o� en leads to be� er insights on
how the model is performing, allowing common error modes to be
identi� ed/addressed, and enabling crucial re� nement of the per-
formance metrics to provide be� er alignment with the required
outputs. To this end, it is advisable to use expert and domain
knowledge when hyperparameter tuning, rather than relying
solely on fully optimized hyperparameter tuning functions pro-
vided by many development environments. In practice, this will
involve a hybrid approach consisting of a series of tuning experi-
ments where a subset of hyperparameters are tuned according to a
performance metric, interleaved with manual interpretation and
qualitative analysis of the results, to determine the next set of
tuning experiments or to terminate the tuning activities.

A detailed description and evidence of the performance
evaluation and comprehensive performance measures of the
pre-released product is a data science-based expectation.

When target model performance is achieved and/or no further
changes to architecture are identified, the best performing ML
models are selected as the candidates for integration into the
overarching IT system and deployed. This selection is based on not
only the nonfunctional requirement of performance on the vali-
dation data set, but also on the criteria de� ned in the requirements,
such as the ease of algorithm maintenance, ease of deployment in
the target deployment environment, and other nonfunctional
requirements such as runtime.

Model integration and deployment
During this stage, the ML algorithms and models are migrated from
the development environment code, which supports fast prototyp-
ing and experimentation, to deployment target code that is more
efficient and more suited to deployment environments and long-
term maintenance. This process involves removing much of the
code designed to support prototyping candidate algorithms and
experimentation. This includes identifying the parameters and
algorithm choices to be adopted and removing candidate algo-
rithms that did not yield the desired properties or performance.

Key to this phase is modularization to isolate the inference
module of the code from the remaining code. Inference modules
are the components of the code relating to the forward passing of
the test or previously unseen data as input through to the output of
the ML subsystem. Inference refers to the forward pass execution
of the subsystem, the module of the code that accepts the raw data
as input and provides the output. This excludes any function

relating to validating the output against the ground truth, or code
involved with altering the model parameters or hyperparameters.

ML algorithms are typically developed in development environ-
ments tailored to support training, experimentation, and hyperpa-
rameter tuning. These environments are not always consistent with
the deployment requirements, in which case porting the code and
trained ML models to a runtime environment is required, along with
the appropriate code review, veri� cation, and testing. If necessary,
the minimum amount of code that requires porting to the runtime
environment is the inference portion. Integration also requires the
speci� cation and implementation of the interface between the ML
subsystem and overarching IT system.

Similar to the inference, components of the pipeline perfor-
mance evaluation exist in the training codebase. However, this
needs to be implemented as a full pipeline performance evalua-
tion, with the possibly to port it to a more suitable development
and/or runtime environment.

Acceptance and release
The final infrastructure for release, maintenance, and perfor-
mance veri� cation of the ML subsystem is developed during this
phase. Processes relating to the development, release, and mainte-
nance of the subsystem is de� ned to specify if, how, and when the
functions of developing ML algorithms are veri� ed. Choices must
be made as to whether the training and possibly tuning of the ML
models are included in these processes. For example, it may be
decided to run the complete model training, hyperparameter tun-
ing, and model performance on the test data at regular instances
to verify functions of the code. Alternatively, it may be deemed
that the model training and hyperparameter tuning are not part of
the core code or infrastructure, and are excluded from the veri� -
cation process. At a minimum the process should specify, and
appropriately document, how verification of the ML subsystem
shall be performed. The execution of such processes should result
in the release of the � rst version of the ML subsystem.

As with other software system
development, ML development
has business, technical,
and project risk activities
commensurate with the
complexity and novelty of
the system.

2 0 P H A R M A C E U T I C A L E N G I N E E R I N G

Operation Phase
During this phase, the ML subsystem is continuously monitored
and maintained. This may involve automation to alert if results
deviate from predetermined limits, or may involve manual moni-
toring, or a combination. Performance monitoring may result in
required changes affecting the subsystem. This is where the
maintenance and performance evaluation processes need to be
robust and su� cient to support the retraining and adoption of an
alternative ML model(s). Such changes must be made in adherence
with the organization’s change management process, leveraging
risk-based evaluation(s) considering the change’s impact to cur-
rent and future production data.

A typical request might be that the system is poor at generaliz-
ing to a specific subclass of input data. A typical solution is to
acquire and integrate data of this subclass into the training data-
set. The integration of additional training data must be systematic
in that every change in the performance is measured, validated,
and understood. For example, upon acquiring the additional data,
a portion of it could be assigned to the training set and the rest
excluded from all model training activities. Model training would
proceed with the augmented training data set with the realization
that the additional subclass of data may result in an overall drop in
performance due to the inclusion of more challenging data. Once
trained, tested, and tuned, performance of the revised model
should be staged by initially executing the evaluation processes
with the original model on the augmented test data set with an
expectation that the performance may drop because of the
increased challenge. Then, execution of the evaluation process
with the revised model will take place with the expectation that
the performance measures achieve the desired acceptable level.

It can be seen from this example that operation and mainte-
nance of the system and ML subsystem are themselves iterative
processes that follow the train-test-tune cycle of the original
development effort, with appropriate management of new data

through defined data governance and continued performance
evaluation.

Case Study
This case study describes the development of an application for
chair-side analysis of dental bitewing X-rays. Bitewings X-rays
typically show both upper and lower teeth, including the root on
the le� or right side of the mouth. They are used as an aid to diag-
nose and monitor several conditions such as gum disease and
cavities between teeth. The bitewing X-ray is taken by placing a
sensor inside the mouth between the teeth and tongue, and point-
ing an X-ray source from the outside of the mouth. The sensor is
then removed and digita lly scanned to provide an image.
Radiographic examinations can increase the number of carious
lesions that are detected over those that would be detectable by
clinical examination alone; this use is recommended by the UK
Department of Health in the FGDP (UK) guideline document [4].
Nevertheless, systematic reviews have consistently reported poor
diagnostic sensitivity of only 37% for radiographic detection of
demineralization by dentists [5].

“The purpose of the product is to detect the early stages of
tooth decay, known clinically as caries. Early caries are indicated
by subtle changes in the appearance of the outer enamel surface of
the tooth in bitewing x-rays. These small changes are challenging
to detect, particularly given poor lighting conditions and time
pressures present in a working dental practice. Not finding
early-stage caries is a missed opportunity for using preventative
treatments, such as interdental cleaning and resin infiltration,
and is likely to lead to further decay and the need for restorative
treatments such as drilling and in� ltration” [6].

The product deploys a series of algorithms to analyze bitewing
for early decay and highlights areas that merit a closer look by the
dentist arrows indicated regions where the AI has detected image
biomarkers that are indicative of early caries. Control in the graph-
ical user interface allow dentists to move, delete or add arrows [3].

The product is provided in multiple forms: as a stand-alone
application, integrated into the dentist’s existing image manage-
ment software, or a web-hosted analysis service. Under the EU
Medical Device Directive [7], it is registered as So� ware as a Medical
Device of class 1 safety to be used by quali� ed dentist practitioners
to aid in the diagnosis of early enamel-only caries. The product is
developed and released according to ISO 13485 standards.

The business opportunities and health benefits for an early
caries detector are in minimal-intervention or minimal-invasive
dentistry. This is a pioneering approach to dentistry where early
preventive actions are favored to preempt and minimize the use of
traditional drill and � ll treatments. Thus, instead of waiting until
the caries or decay has penetrated deeper into the tooth to merit
drilling, the disease is detected early when decay is limited to the
outer enamel surface, so it can be repaired by noninvasive treat-
ments such as high-� uoride toothpaste or a hygienist visit [8].

The product’s functional requirements were formulated to
describe an assistive tool that highlights evidence of decay for

Figure 2: The product’s graphical user interface [3].

COVER STORY GAMP ® AND MACHINE LE ARNING

J A N U A R Y/ F E B R U A R Y 2 0 2 3 2 1

be� er-informed decisions on diagnosis and treatment paths. An
assistive diagnosis function was chosen to dovetail into the den-
tist’s existing work path. The assistive nature also had regulatory
safety class implications in that the product can only be used by
trained clinicians who are always given the � nal decision on diag-
nosis and treatment path. A key requirement for the product was
that it provided clear indications to allow the clinician to make
better-informed decisions but did not attempt to get in the way,
otherwise interfere with, or replace the clinician’s actions.

The product was also required to � t seamlessly into the den-
tist’s clinical workflow. Once the need for a bitewing had been
identified, the workflow involved acquiring a pair of bitewings,
one for each side of the mouth, and analyzing the X-ray immedi-
ately on their chair-side computer so that patients could be
informed of the chosen treatment path immediately. Note:
Typically, dentists have only a short time to analyze each bitewing
during which time they look for a range of conditions in addition to
early caries. To this end, a fully automated analysis was required
that highlighted regions of the bitewing that were early caries.

Nonfunctional requirements included working on a chair-side
computer, usually a PC without specialist hardware or reliance on
an internet connection. The analysis time also needed to be fast
and not add to the dentist’s current image analysis and clinical
reporting time of 20 seconds.

Regarding caries detection performance, previous research
demonstrated that general practice dentists detect approximately
40% of early caries [9, 10]. The performance objective was to
increase detection rate without an unacceptable increase in false
detections (i.e., false positives). False detections are undesirable,
but since treatment paths are noninvasive, they were not harmful
to patients.

A comprehensive search for relevant literature and published
material on technologies relating to image analysis of dental bite-
wings was performed, with focus on evidence of implementation
and performance. This yielded information on the application of
deep learning algorithms to the analysis of dental images, but
there were no published case data on bitewings. The lack of a sig-
ni� cant published data set indicated the need for data acquisition
to be conducted as part of the project, and thus a requirement that
the ML algorithms used should not need a large sample size to
generate a predictive model with suitable accuracy.

A task was undertaken to acquire an initial set of data which
consisted of 130 bitewings collected from a single site (i.e., dental
office/practice), selected to have higher prevalence of proximal
caries. At the onset of the project, it was decided that for general
dental practitioners to gain maximum bene� t, the product would
have to mimic the analysis of experts in dental bitewings.
(Maxillofacial radiologists are the clinical experts in analyzing
dental medical images and are adept at � nding early enamel-only
proximal caries in bitewings and distinguishing them from other
pathologies or image artifacts .) To this end, � ve dento-maxillofacial
radiologists were recruited; each one analyzed every image and
recorded the location of proximal caries together with the severity

of the caries on an internationally recognized four-point grading
scale. Consolidation of the experts’ analyses provided a single
“gold standard” data set.

Due to the challenge of � nding small pathologies in X-rays, the
ML subsystem was designed as a pipeline of algorithms to utilize
the larger features of the images. This prototype formed the back-
bone of a simple, interactive product demo, which allowed busi-
ness collaborators and potential customers to provide images of
their own as inputs and evaluate the results. This provided valua-
ble user feedback to guide subsequent development. It also
demonstrated the need for the solution to be generic to images
from all acquisition hardware, hence the need for the project to
collect general practice data (which occurred during the project/
production phase).

The prototype performance report contained detailed descrip-
tions of the training and evaluation methods together with all
experiments executed with quantitative performance measures
and qualitative evaluations, including illustrations of the failure
modes. This report also included a considered prediction of the
performance of the product. (Intellectual property analysis deter-
mined the freedom to operate and identify novel IP to be consid-
ered for protection.)

Results from the prototype demonstrated that the algorithm
performed poorly on X-rays collected from other sites. A subse-
quent ethically approved clinical data collection project was initi-
ated to collect images from 10 general dental practices and have
them annotated by a panel of maxillofacial radiologists. Once col-
lected and annotated, a test set consisting of 20% of the images
was selected by random selection, stratified over the sites that
were excluded from all training and validation of the models and
evaluation of the pipeline to provide the unbiased data set for
evaluation of the � nal ML subsystem and end product.

Based on the prototype experiments, the ML subsystem
design in the case study consisted of three distinct components:
(a) pa� ern recognition tooth detector; (b) identi� cation of a super-
set of candidate locations of caries by dynamic programming; and
(c) deep learning model for classi� cation of candidates as either
early caries or other. Risk analysis of these components identi� ed
the � nal stage as being the highest risk due to the more innovative
approach of using neural networks compared to pa� ern matching
and the potential need for a large training data set to ensure

This case study describes the
development of an application
for chair-side analysis of dental
bitewing X-rays.

2 2 P H A R M A C E U T I C A L E N G I N E E R I N G

su� cient detection performance. To this end, mitigating strate-
gies were developed, such as identifying less data-hungry alterna-
tive classi� ers or acquiring additional data.

The tooth detector and caries classifier both contained ML
models, but for brevity we describe the planning for the � nal com-
ponent: the deep learning classifier. The Python language and
development environment was chosen to develop the deep learn-
ing classi� er due to its support for rapid prototyping of ML models
and availability of third party, convolutional neural network sup-
port libraries.

The data format was speci� ed for each component. Focusing
on the � nal component, the input was a set of candidate locations
along the proximal tooth edges generated by the preceding com-
ponent as indicative of caries, with the output speci� ed as a proba-
bility of measure for whether a candidate is classi� ed as having
caries. These candidate locations and con� dence measures could
be evaluated by comparing them to the expert gold standard of
caries annotations. The model’s output was classi� ed as true posi-
tives if they resided on the same proximal edge as an expert’s car-
ies annotation within a distance tolerance. This allowed for the
construction of a receiver operator characteristic (ROC) curve
accumulated for all candidate locations and for all potential
threshold values, with the area under the curve (AUC) used as the
principal performance metric for evaluating and comparing
model performances.

For the task of object detection of early caries on the proximal
edges of teeth, two candidate machine learning algorithms were
identified: (a) random forest classification and (b) deep learning
classi� er.

Both required input data as a set of candidate locations along
the surface edge. Ground truth data consisted of a classi� cation if
each point was non-carious or carious with a subsequent subclas-
si� cation of carious regions as being enamel caries (i.e., caries that
had only penetrated the outer enamel of the tooth) or dentine car-
ies (i.e., caries that had progressed further into the tooth dentine).
The performance metric was determined as the area under the
ROC curve for the classi� cation of enamel caries.

Model development followed the regular ML life cycle of itera-
tive training, testing, evaluation, and hyperparameter tuning.
Five-fold cross-validation stratified over the image source sites
was used to divide the data into training and validation data sets.
The approach for hyperparameter tuning involving careful
recording of hyperparameters and results for each iteration was to
manually identify the changes that had a positive effect on the
performance and tweak the parameters accordingly for the next
iteration, comparing performance metrics and performing quali-
tative evaluation of the results.

As the experiments progressed, it became evident that the
deep learning classi� er solution o� ered superior performance to
the random forest classi� cation and focus turned to choosing the
best hyperparameters for that model.

The product speci� cation required running the product on a
regular PC without internet connection or bespoke hardware or

additional so� ware. To ful� ll this nonfunctional requirement, the
inference module of the ML subcomponent developed in Python
was ported to C++ components of pipeline augmented with .net
API. It excludes all modules related to evaluation, model training,
and hyperparameter tuning. Deep learning models were ported
from Python (TensorFlow) to ONNX format and runtime inference
code written in C# using Microsoft ML support libraries. All
design, maintenance, and release activities of the product were
audited against ISO 13485 standards.

For the product, in addition to the inference module, code to
validate the performance of the runtime inference was ported to
the build and test pipeline environments. This enabled automated
testing and validation of the model performance during the code
build cycle. A design decision was made to develop a fully inte-
grated performance evaluation reporting into the testing and
release process. The interface was augmented with the ability to
supply test images and compare the results with the gold standard
annotations. Selenium UI testing was used to drive the tests which
were integrated and automated in the testing components of the
release pipeline. Model training and hyperparameter tuning
functions were not considered core to the product and were
excluded from the so� ware maintenance and performance vali-
dation processes.

To provide additional validation of the product’s performance,
an ethically approved clinical study to investigate whether the
ability of dentists to detect enamel-only proximal caries was
enhanced using the product. The study reported that dentists
using the product found 75.8% of the early caries compared with
only a 44.3% detection rate for dentists using the bitewing X-ray
image without AI assistance, a statistically signi� cant increase in
sensitivity of 71% [3].

During the study and subsequent early adopter usage, the
need to train and educate users to gain maximum bene� t from the
product became evident. This type of interactive AI system, where
the clinician is an integral part of the AI work� ow loop, requires
the human to examine the regions of interest suggested by the AI
system but not blindly accept them as truth. Instead, users applied
their clinical knowledge and judgment when making diagnostic
decisions. Training material was produced to present users with
the speci� city and sensitivity performance measures of the prod-
uct and discussions on how to best interpret the output to enable
dentists to make better diagnosis and treatment decisions for
their patients.

CONCLUSION
This article explored life-cycle activities for ML components or
subsystems in regulated life sciences using an example of a
SaMD product. It has illustrated the life cycle and management
of the ML subsystem or components within a wider system or
application life cycle. Such usage of ML is occurring throughout
the pharmaceutical life cycle from drug discovery and clinical
development, to post-licensure product surveillance and real-
world data analytics.

COVER STORY GAMP ® AND MACHINE LE ARNING

J A N U A R Y/ F E B R U A R Y 2 0 2 3 2 3

References
1. International Society for Pharmaceutical Engineering. GAMP® Good Practice Guide: Regulated

Mobile Applications. North Bethesda, MD: International Society for Pharmaceutical Engineering,
2014. https://ispe.org/publications/guidance-documents/gamp-good-practice-guide-
regulated-mobile-applications

2. International Society for Pharmaceutical Engineering. GAMP Records and Data Integrity
Good Practice Guide: Data Integrity by Design. North Bethesda, MD: International Society
for Pharmaceutical Engineering, 2020. https://ispe.org/publications/guidance-documents/
gamp-rdi-good-practice-guide-data-integrity-design

3. Devlin, H., T. Williams, J. Graham, and M. Ashley. “The ADEPT Study: A Comparative Study of
Dentists’ Ability to Detect Enamel-Only Proximal Caries in Bitewing Radiographs With and
Without the Use of AssistDent Artifi cial Intelligence Software.” British Dental Journal 231,
(2021): 481–85. doi:10.1038/s41415-021-3526-6

4. Horner, K. and, K. A. Eaton (Eds.). Selection Criteria for Dental Radiography, 3rd ed. London:
Faculty of General Dental Practice (UK), 2013.

5. Mejàre, I., H. G. Gröndahl, K. Carlstedt, A. C. Grever, and E. Ottosson. “Accuracy at Radiography
and Probing for the Diagnosis of Proximal Caries.” Scandinavian Journal of Dental Research
93 (1985): 178–84.

6. Yu, O. Y., W. Y. Lam, A. W. Wong, D. Duangthip, and C. H. Chu. “Nonrestorative Management
of Dental Caries.” Dentistry Journal (Basel) 9, no. 10 (2021):121. doi:10.3390/dj9100121

7. European Union. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5
April 2017 on Medical Devices, Amending Directive 2001/83/EC, Regulation (EC) No 178/2002
and Regulation (EC) No 1223/2009 and Repealing Council Directives 90/385/EEC and 93/42/EEC.
(5 May 2017). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0745

8. Banerjee, A., J. E. Frencken, F. Schwendicke, and N. P. T. Innes. “Contemporary Operative
Caries Management: Consensus Recommendations on Minimally Invasive Caries Removal.”
British Dental Journal 223, no. 3 (2017): 215–22. doi:10.1038/sj.bdj.2017.672

9. Mejàre, I., H. G. Gröndahl, K. Carlstedt, A. C. Grever, E. Ottosson. “Accuracy at Radiography
and Probing for the Diagnosis of Proximal Caries.” Scandinavian Journal of Dental Research
93, no. 2 (1985): 178–84. doi:10.1111/j.1600-0722.1985.tb01328.x

10. Machiulskiene, V., B. Nyvad, and V. Baelum. “Comparison of Diagnostic Yields of Clinical
and Radiographic Caries Examinations in Children of Di� erent Age.” European Journal of
Paediatric Dentistry 5, no. 3 (2004): 157–62. https://pubmed.ncbi.nlm.nih.gov/15471524/

Bibliography
International Society for Pharmaceutical Engineering. GAMP® 5: A Risk-Based Approach to
Compliant GxP Computerized Systems, 2nd Edition. ISPE: North Bethesda, Maryland (2022).
https://ispe.org/publications/guidance-documents/gamp-5-guide-2nd-edition

US Food and Drug Administration. “Artifi cial Intelligence/Machine Learning (AI/ML)-Based Software as
a Medical Device (SaMD) Action Plan.” (22 September 2021). https://www.fda.gov/medical-devices/
software-medical-device-samd/artifi cial-intelligence-and-machine-learning-software-medical-device

US Food and Drug Administration. “Proposed Regulatory Framework for Modifi cations to Artifi cial
Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD), Discussion
Paper and Request for Feedback.” https://www.fda.gov/fi les/medical%20devices/published/
US-FDA-Artifi cial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf

International Medical Device Regulators Forum. “Software as a Medical Device: Possible Framework
for Risk Categorization and Corresponding Considerations.” IMDRF Software as a Medical
Device (SaMD) Working Group (18 September 2014). https://www.imdrf.org/sites/default/fi les/
docs/imdrf/fi nal/technical/imdrf-tech-140918-samd-framework-risk-categorization-141013.pdf

BSI, Association for the Advancement of Medical Instrumentation, and Medicines and Healthcare
Products Regulatory Agency. “The Emergence of Artifi cial Intelligence and Machine Learning
Algorithms in Healthcare: Recommendations to Support Governance and Regulation.” Position
paper (2019). https://www.bsigroup.com/globalassets/localfi les/en-gb/about-bsi/nsb/innovation/
mhra-ai-paper-2019.pdf

US Food and Drug Administration. “Good Machine Learning Practice for Medical Device Development:
Guiding Principles.” (October 2021). https://www.fda.gov/media/153486/download

About the authors
Eric Staib is the Vice President of Compliance and Quality Management at Signant Health. He
has more than 23 years of pharmaceutical industry experience in various GXP areas, including

direct experience and leadership for quality systems development/management, software quality
engineering, information technology, and computer systems validation. He holds a BS in biology
from James Madison University, an MS in quality assurance and regulatory a� airs from Temple
University, a graduate certifi cate in project management from Lehigh University, and an MBA
in pharmaceutical management from Drexel University. Eric was a previously Chair of the GAMP
Americas Steering Committee for ISPE, and currently chairs a Software Automation and Artifi cial
Intelligence Special Interest Group (SIG). He has presented at numerous industry conferences in
addition to having published and contributed to several concept papers, magazine and journal
articles, and good practice guides. Eric has been an ISPE member since 2001.
Tomos Gwyn Williams, PhD, is the Chief Technical O� cer of Manchester Imaging Ltd., and
leads research and development activities. Manchester Imaging specializes in the research
and development of machine learning algorithms and their deployment in software as medical
device products for both in-house and as third-party providers for other companies. Tom has
over 20 years of experience working in artifi cial intelligence and machine learning spanning both
academic and commercial institutions. He specializes in inventing computer vision solutions that
aid clinicians in diagnosis and treatment planning and has developed successful solutions for a
range of medical conditions including dental decay, nonmelanoma skin cancers, facial paralysis,
and osteoarthritis. Tom has an engineering degree from Imperial College, London, and a PhD in
AI from the University of Wales, Aberystwyth. He has been an ISPE member since 2020.
Siôn Wyn, Director, Conformity Ltd., is an acknowledged expert in computer system validation
and compliance, data integrity, electronic records and signatures, and international regulations
in this fi eld. He assisted the FDA as a consultant with its reexamination of 21 CFR Part 11 and
was a member of the core team that produced the FDA Guidance on 21 CFR Part 11 Scope and
Application. He received the FDA Group Recognition Award for work on Part 11. Wyn is the Editor
of ISPE’s GAMP® 5 Guide: A Risk-Based Approach to Compliant GxP Computerized Systems, 2nd
Edition, co-lead of the ISPE GAMP® Guide: Records and Data Integrity, and is a member of the
ISPE GAMP Global Steering Committee, GAMP Editorial Board, and the GAMP Europe Steering
Committee. Wyn received the 2006 ISPE Professional Achievement Award, which honors an ISPE
member who has made a signifi cant contribution to the pharmaceutical industry. He received
the ISPE UK Fellow Award in 2016. He is a Technical Consultant to ISPE.

8 Ridgedale Avenue, Cedar Knolls, NJ 07927 ph.:973-775-7777

Contact: guy_cipriano@eiassociates.com – ext. 378

www.eiassociates.com

FFrroomm BBeenncchhttoopp ttoo DDiissttrriibbuuttiioonn……
 WWee UUnnddeerrssttaanndd YYoouurr GGxxPP FFaacciilliittiieess

• Research
• Laboratories
• Process Scale-Up
• Finishing
• Pilot Plants
• Process Manufacturing:

Batch / Continuous
• Sterile & Non-Sterile

Manufacturing
• Clean Rooms
• Packaging Suites
• Warehouse Facilities
• Support Areas
• Plant Utility Systems
• API

