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This article explores life-cycle activities for 
machine learning (ML) within regulated life 
sciences. It positions and contextualizes the life 
cycle and management of the ML subsystem or 
components within a wider system life cycle. It 
also gives general descriptions and guidance 
illustrated by a case study demonstrating a ML 
application to medical image recognition, or 
software as a medical device (SaMD) [1]. 

T
his article focuses on the ML component or subsystem embed-
ded within the wider system, solution, or application. It is not 
intended to be a general primer or introduction to artificial 

intelligence (AI) or ML, nor an introduction to general computer 
validation and/or life-cycle activities.

ML is a  subdiscipline of AI. An ML system builds a predictive 
model from input (i.e., training) data, and uses the learned model 
to make useful predictions from new, never-before-seen data.

For most systems that use ML, many aspects of the traditional 
computerized system life cycle, and compliance and validation 
approach, are still fully applicable (e.g., those related to speci� ca-
tion and veri� cation of user interface, reporting, security, access 
control, data integrity, and data life-cycle management). 

The use of the  term ML component is not intended to suggest 
that such a component is a single entity. In most cases, the ML 
component will typically consist of several subcomponents com-
prising a “pipeline” supporting a number of functional stages, 
such as input/data preparation or output/results � ltering, and one 
or more central ML “engine” or model(s) connected together. In 
such cases, the term ML subsystem is the most appropriate. The 
authors strongly encourage the use of appropriate so� ware auto-
mation and other tools to develop and manage both the ML subsys-
tem and the broader, overarching system, solution, or application. 
This article also seeks to avoid the implication that new documen-
tation deliverables are necessary, unless they are clearly required 

by regulations (for example, in some cases of SaMD where device 
requirements, user needs analysis, human factors evaluations, 
clinical trials, and regulatory submission need to be considered), 
or such deliverables are clearly bene� cial to the reliability, main-
tainability, and/or quality of the operational system and its � tness 
for intended use. (See the sidebar for other key de� nitions.)

Operational ML subsystems provide di� erent outputs as they 
evolve, but the veri� cation and validation of the system should be 
kept updated in line with these changes. This must include appro-
priate change management, version control, and monitoring.  In 
addition, some ML systems have stochastic elements (having a 
random probability distribution or pattern), which means that 
results will be different for identical inputs regardless of model 
training. Therefore, validation and verification must use a 
sufficiently large validation data set and calculating summary 
performance measures that are meaningful and representative of 
the overall system performance and robust to small output varia-
tions between successive runs.

PREREQUISITES AND CONTEXT
There are many similarities in best practices between ML and 
more traditional algorithmic programming. Successful imple-
mentation of ML requires good business analysis and process 
understanding by data scientists, effective planning, and the 
application of good software development, engineering, and 
maintenance practices. The business case and intended use must 
be fully understood to best select the right data and data manage-
ment must be supported by a mature data governance strategy. 

Performance metrics are important in the design of any ML 
subsystem. They de� ne what output(s) will be generated and how 
they will be evaluated against the required or expected results to 
determine the ML performance. These metrics drive the iterative 
training, evaluation, and improvement stages that are inherent 
within the development of all ML systems, as described in the 
project/production phase. 

Another key aspect of ML development is the tight integration 
of data and metadata into the development process. The term 
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data-centric development is sometimes used to re� ect this. As a 
result, data should be managed with utmost care, including con-
trols for data acquisition, selection, classi� cation, cleansing, and 
augmentation.

As with other so� ware system development, ML development 
has business, technical, and project risk activities commensurate 
with the complexity and novelty of the system. Managing these 
risks require good process/business analysis, risk analysis, and 
cost/benefit analysis at all stages of development to recognize 
issues and decide whether to take mitigating or rectifying steps, or 
to terminate the project.

Development planning requires consideration of human fac-
tors or bias, privacy, security, and legal liability. This requires 
transparency and an understanding for the ability to reproduce 
outcomes, adequately interpret the results, and understand the 
applicability for how models will be applied.

The level of risk depends on the intended use. The extent, 
rigor, and documentation of validation and controls should take 
into account factors such as the level of human involvement, the 
signi� cance of information to the healthcare decision (to treat or 
diagnose, to drive clinical management, or to inform clinical 
management), and the healthcare situation or condition, (critical, 
serious, or nonserious).

The ISPE GAMP® Records and Data Integrity Good Practice 
Guide: Data Integrity by Design [2], Appendix S1: A rtificial 
Intelligence: Machine Learning, identifies the life cycle of data 
within a ML framework, emphasizing the link to both the GAMP 
data life cycle and GAMP system life cycle. Wider data integrity 
(DI) topics are also discussed in the guide.

ML SUBSYSTEM LIFE-CYCLE OVERVIEW
The following is an overview of the life-cycle model for the ML 
subsystem (see Figure 1). Phase terminology consistent with the 
GAMP 5 overall system life cycle is used including concept, 
project/production, and operation. A case study follows that pre-
sents the speci� c life-cycle activities for a SaMD product. For con-
sistency with the GAMP® Good Practice Guide: A Risk-Based 
Approach to Regulated Mobile Applications [1], phase terminology 
includes project and production.

I n the concept phase, the business need or opportunity is 
identi� ed, clari� ed, and agreed upon. The speci� c problem to be 
solved is defined. The initial data is identified (it may be from a 
data warehouse or data lake), selected, and prepared as “case 
data.” Prototyping allows the assessment and selection of suitable 
algorithms and hyperparameters, and preliminary hyperparame-
ter values used to control the learning process. Examples are vari-
ables that determine the network structure, such as number of 
hidden units, and variables that determine how the network is 
trained, such as the learning rate. Data management begins in this 
phase when the case data is originally collected.

During the project/production phase, following a defined 
plan, the selected technologies and technical architecture are 
de� ned. Formal risk management activities commence, as well as 
other supporting activities, including project-based con� guration 
and change management. Project/production phase activities for 
the ML subsystem are typically iterative and incremental rather 
than linear. These iterative activities include model design/selec-
tion, engineering, model training, testing, evaluation, and hyper-
parameter tuning.

Figure 1: ML subsystem life cycle.

Iden�fyIden�fy
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Data management is another key project/
production phase activity, including the acquisi-
tion of new data, secure storage and handling, 
preparation (including labeling), and partitioning 
of data into training and validation data sets. 
During the model development stages, the train-
ing data set is used to train the model, and the vali-
dation data set is used to provide an unbiased 
evaluation of the model while tuning the model’s 
hyperparameters. In certain scenarios, such as 
cross-validation experiments, specific data sets 
may ful� ll the role of training and validation but 
not in the same iteration of the experiment. The 
test data set is excluded from all training and 
hyperparameter tuning activities; instead it is 
used to provide an unbiased evaluation of the � nal 
model within the overarching system. There is 
usually integration of the ML component into the 
wider computerized system and deployment into 
the target or other environment where acceptance 
and release activities are performed using the test 
data set.

In the operation phase, the system performance 
is monitored and evaluated. As new (live) data 
becomes available, further configuration/coding, 
tuning, training, testing, and evaluation are per-
formed. There is likely to be a tight and iterative 
loop of alternating production and operation activi-
ties as the availability of new data and ongoing per-
formance evaluation and quality checks lead to 
opportunities for improved performance, both pro-
active and reactive, or changing scope of use. This 
requires e� ective change and con� guration man-
agement applied to all constituents of the ML sys-
tem, such as code, the data, and models.

ML SUBSYSTEM LIFE-CYCLE PHASES
The following sections describe and discuss the 
typical activities conducted during the ML sub-
system life cycle and are supported by an illustra-
tive case study example [3] at the end of the 
article. 

Concept Phase
The objective of this phase is to provide insight 
into the expected development cost and opera-
tional benefits of a ML subsystem. This should 
include a decision or rationale on why a ML solu-
tion shall be incorporated. This phase also pro-
vides opportunities to research and investigate 
which ML algorithms should be considered for 
development based on cost, development risks, 
and expected performance. This phase a lso 

Defi nitions
Artifi cial intelligence (AI): a system that displays intelligent 
behavior by analyzing its environment and taking actions (with 
some degree of autonomy) to achieve specifi c goals. AI-based 
systems can be purely software-based, acting in the virtual 
space, or can be embedded in hardware devices. As a scientifi c 
discipline, AI includes several approaches and techniques, such 
as machine learning (of which deep learning and reinforcement 
learning are specifi c examples), machine reasoning (which 
includes planning, scheduling, knowledge representation and 
reasoning, search, and optimization), and robotics (which includes 
control, perception, sensors, and actuators, as well as the 
integration of all other techniques into cyber-physical systems).

Machine learning (ML): a subdiscipline of AI and a program or 
system that builds (trains) a predictive model from input data 
(such as training data). The system uses the learned model to 
make useful predictions from new data drawn from the same 
distribution as the one used to train the model.

Deep learning: also known as deep structured learning or 
convolutional neural networks (CNNs), it is a part of a family of 
machine learning methods based on artifi cial neural networks 
with representation learning.

Random forest: a ML technique used to solve regression and 
classifi cation problems.

Case data: data that is strategically selected to be unbiased 
and representative of the types of information to be processed 
by the ML, used for selection of training and validation 
samples/subsets.

Training data: a sample and/or subset of data, used for 
learning, to fi t the model parameters of the model/classifi er.

Validation data: a sample or subset of data used during model 
training and tuning to evaluate the model. The data provides 
evaluation independent of the training data, but not completely 
independent of the model training process. In data science 
and AI/ML, validation is used di� erently in GxP computerized 
systems. 

Test data: a sample and/or subset of data excluded from all 
training, tuning, and validation activities, reserved to assess 
and evaluate the performance of a fully specifi ed model/
classifi er. 

Gold standard/“ground truth”: a set of results that serves as 
the approved external criterion in which the model/classifi er 
output is ultimately evaluated and/or compared against.
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include e� orts in gathering initial case data and understanding 
the properties of that data.

Identify business need and opportunity
The business need is developed and analyzed, the overall process 
and work� ow are de� ned and agreed upon, and how the proposed 
application will support the process is identi� ed. This analysis will 
help determine constraints, such as availability of data, deployment 
hardware, legal liability, and regulatory and intellectual property 
(IP) factors. Detailed data-related factors such as source, structure, 
format, and segmentation should also be considered.

Problem defi nition
At this stage, the initial set of requirements may be speci� ed. This ini-
tial “requirements speci� cation” drives the development and de� nes 
the functionality required from the system and ML subsystem.

Nonfunctional requirements such as integration and deploy-
ment constraints should also be considered at this early stage to 
inform the choice of ML algorithms. Nonfunctional requirements 
include an initial set of performance metrics. These are a detailed 
description of the ML subsystem output and how these outputs 
will be compared to the defined expectations. This comparison 
will provide quantitative measures of how well the subsystem 
performs. These measurements drive the training, evaluation, 
and tuning of the ML subsystem models. The performance metrics 
may change during development, training, and retraining. Other 
nonfunctional requirements include deployment constraints, 
such as choice of hardware, and performance constraints such as 
speed and/or capacity.

Prototyping
ML projects can bene� t signi� cantly from deploying algorithms 
and techniques developed for and applied to other applications 
and use cases. The objective of this stage is to conduct research 
and initial prototyping to identify which algorithms and resources 
are most likely to result in successful delivery of the project.

The ML � eld has a varied and growing range of algorithms and 
model architectures to choose from, and within each algorithm 
there are numerous hyperparameters to tune. For a new system, it is 
unlikely that the choice of algorithm is so clear-cut that a decision 
can be made to fully specify the component and proceed to develop-
ment at this stage. In order to decide which algorithm is most suita-
ble and how it should be trained and evaluated, the candidates 
should be evaluated against the operational, performance, and, if 
relevant, regulatory requirements. These activities provide an early 
indication of the likely predictive performance of the model and 
how likely the system is to achieve that level of performance.

Data acquisition and selection
An initial set of data will be collected from the existing business 
activities, or need to be gathered, to provide a starting point for the 
prototyping. Once identified, this stage determines what is 
required to prepare the data for the training and evaluation of the 

models, including formatting, cleaning, and feature extraction 
(collectively referred to as data transformation). It is also likely 
that the data needs to be labeled to provide the training inputs  
from which the prototype subsystem will be evaluated. At this 
phase, it is not expected that the data be complete because subse-
quent stages will identify if there is a need for additional data and 
the plan for acquiring and labeling that data. It is, however, impor-
tant to partition the case data into training and validation sets to 
avoid compromising future evaluations. Training data may 
include biased human decisions or re� ect inequalities, or bias may 
be introduced by � awed data sampling, in which groups or classes 
are over- or underrepresented in the training data. Appropriate 
measures should be applied to control the risk of such bias.

Project/Production Phase
The output from this phase is an implementation of the ML sub-
system integrated into the overarching IT system together with 
extensive performance evaluation measures. Integral to this is the 
development of the training and performance evaluation infra-
structure that supports training, tuning, and evaluation of the 
models. Tools supporting model construction or data preparation 
may also be developed during this phase (such as tools that sup-
port labeling of the training data). 

This phase follows an iterative approach where successive 
versions of the ML subsystem are specified, designed/selected, 
implemented, trained, tuned, and evaluated. The phase consists of 
a series of experiments that iteratively improves the design, 
implementation, and hyperparameter selection of the subsystem 
to optimize performance.

Project data management
Prior to the project/production phase kickoff, it must be deter-
mined if the case data ful� lls the requirements of the project life 
cycle: for instance, that there is a su�  cient amount of data to train 
the model and a data range that encompasses the expected real-
world data. If this is not the case, additional data will be needed, 
which may require a separate data acquisition project. This phase 
also determines the appropriateness of the data for intended use, 
and prepares it for subsystem development. Activities include 
format specification, selection, and application tools for data 
annotation and clean up.

The extent and format required for the data is driven by the 
performance metrics previously obtained. For example, for the 
task of image analysis object localization, the performance metric 
is speci� ed as the agreement between the ground truth and results 
predicted by the AI. The ground truth is the set of results that 
serves as the approved external criterion in which the model/
classi� er output is ultimately evaluated and/or compared against. 
To achieve this, the ground truth data and AI output must be in a 
comparable form that will enable that measurement to be made 
(for instance, by image segmentation). For a classification task, 
simple labeling of an image as containing a particular feature may 
be su�  cient.



1 8             P H A R M A C E U T I C A L  E N G I N E E R I N G

Model requirements specifi cation
This stage may be considered a “tollgate” in the project/produc-
tion phase, where information gained from the previous phase 
is documented and presented together with informed and 
detailed planning for the project/production phase. The objec-
tive is to provide information on the likely cost, risks, and bene-
� ts of the ML subsystem to inform a decision on whether or not 
to continue. The information presented during this stage pro-
vides confidence that the additional investment required in 
data acquisition, management, and development will deliver 
the business need.

The information and experience gained during the concept 
phase are utilized at the start of the project/production phase to 
specify and design the ML subsystem to as much certainty as pos-
sible and allow for the planning e� ort, including risk estimation, 
of its delivery. Activities in this stage include formulating the ini-
tial design of the subsystem by identifying the main components 
and how they will integrate to perform the analysis. Design deci-
sions rely heavily on the practical experience gained in developing 
the prototype solutions in the previous phase. In addition, the 
speci� cation of the subsystem is formed, which includes the for-
mat of the input and output data for the subsystem and the de� ni-
tion of performance metrics.

Planning involves detailed breakdowns of the development 
e� ort with estimates of timelines and associated risks. Risk anal-
ysis of the project can be performed during this stage to determine 
the items most likely to fail and provide for appropriate mitigating 
actions or alternative solutions to reduce risk. Planning also 
includes the speci� cation of the development environment for the 
ML subsystem, which will have its own budgetary implications in 
the form of software licenses and computing and storage 
resources. The development operations and hardware infrastruc-
ture are set up to support the ML component training and 
evaluation. These may include code and data version-controlled 
repositories, applying any combination of local and cloud-based 
computation. This phase may use a research-focused language 
and platform, but should also take into consideration the end 
deployment requirements and platform to ensure that there are no 
subsequent technical or IP infringement issues.

Model design and selection
The baseline architecture of the ML model is chosen and designed 
during this stage. Knowledge gained from the prototyping phase 
is applied here to identify the single or small number of candidate 
algorithms identi� ed as being most likely able to ful� ll the model 
requirements, both functional and nonfunctional (such as perfor-
mance). The requirements can be su�  ciently broad to allow the 
selection of models across different ML algorithm classes. D ata 
scientists should be wary of choosing too many candidate algo-
rithms at this stage since the e� ort required to optimize each can 
be significant. If the number of candidate algorithms is greater 
than three, the scientists may wish to return to the prototyping 
stage to eliminate some to avoid excessive optimization.

The choice of the underlying ML algorithm leads to the set of 
hyperparameters for each model. Subsequent iterations of the devel-
opment process re� ne the architecture driven by model test results.

Model/data engineering 
This stage involves constructing the model architectures and the 
surrounding infrastructure for data input and evaluation that 
enables training and hyperparameter tuning of the models. Tasks 
include selecting, preparing, managing, and maintaining the data 
for training iterations and recording results to allow comparison 
between trials of di� erent hyperparameters and results from dif-
ferent versions of the architecture. Once set up, the infrastructure 
is then employed to execute a series of trials in which the model 
hyperparameters are altered to determine the set of parameters 
that result in the best model performance.

Model training and hyperparameter optimization
This stage involves training a series of model instances by varying 
hyperparameter values (e.g., the number of hidden units or learning 
rate) and recording the results. Hyperparameter optimization may 
involve manual selection and altering the parameters after each 
iteration, or automated processes using exhaustive search or the 
more e�  cient Bayesian optimization of the hyperparameter space. 

Most ML algorithms possess many hyperparameters and 
hence define a large hyperparameter space over which to opti-
mize. However, applying knowledge of the algorithm and problem 
domain gained during the prototype phase allows data scientists 
to identify the subset of hyperparameters whose values can be 
predetermined and fixed, thus greatly reducing the parameter 
space. Though libraries and infrastructures exist that allow for 
automated hyperparameter tuning, data scientists are advised not 
to take a completely hands-o�  approach to hyperparameter tun-
ing. Dividing the hyperparameter search space experiments into 
smaller regions by allowing only a subset of the hyperparameters 
to optimize for each experiment run can provide useful insights 
on the effect hyperparameters have on the model training and 
performance, leading to a more e�  cient tuning stage.

The output from this stage is a trained model using all the train-
ing data and an optimal, or near-optimal, set of hyperparameters. 
This is considered the best model given the existing � xed architec-
ture and parameters evaluated using the validation data. The itera-
tion of model design to model engineering to hyperparameter tun-
ing to model training to model evaluation reveals insights into the 
performance of the latest and previous models. This yields further 
evidence as to how the model architecture and training options may 
be altered to improve the performance and then a redesign or selec-
tion of an alternative model may be performed and evaluated.

Evaluation and model testing
This is when the best-performing models from the previous train-
ing and selection iteration are subjected to the validation data. 
Excluded from the training of the previous iteration, the valida-
tion data is passed t hrough t he model(s) and t he model’s 
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performance is evaluated. A key requirement for a fair comparison 
is to apply identical training and validation data sets to each candi-
date model. The results are compared to the gold standard labeling 
to produce a set of aggregate and indicative performance metrics, 
or scorecards, which inform on the current performance and drive 
the following iteration if required. 

Many ML libraries incorporate the validation data evaluation 
into their training functions, thus automating much of this pro-
cess. Data scientists, however, should be wary of relying on the 
quantitative measures for model evaluation. Visual qualitative 
evaluation of the validation results o� en leads to be� er insights on 
how the model is performing, allowing common error modes to be 
identi� ed/addressed, and enabling crucial re� nement of the per-
formance metrics to provide be� er alignment with the required 
outputs. To this end, it is advisable to use expert and domain 
knowledge when hyperparameter tuning, rather than relying 
solely on fully optimized hyperparameter tuning functions pro-
vided by many development environments. In practice, this will 
involve a hybrid approach consisting of a series of tuning experi-
ments where a subset of hyperparameters are tuned according to a 
performance metric, interleaved with manual interpretation and 
qualitative analysis of the results, to determine the next set of 
tuning experiments or to terminate the tuning activities. 

A detailed description and evidence of the performance 
evaluation and comprehensive performance measures of the 
pre-released product is a data science-based expectation.

When target model performance is achieved and/or no further 
changes to architecture are identified, the best performing ML 
models are selected as the candidates for integration into the 
overarching IT system and deployed. This selection is based on not 
only the nonfunctional requirement of performance on the vali-
dation data set, but also on the criteria de� ned in the requirements, 
such as the ease of algorithm maintenance, ease of deployment in 
the target deployment environment, and other nonfunctional 
requirements such as runtime.

Model integration and deployment
During this stage, the ML algorithms and models are migrated from 
the development environment code, which supports fast prototyp-
ing and experimentation, to deployment target code that is more 
efficient and more suited to deployment environments and long-
term maintenance. This process involves removing much of the 
code designed to support prototyping candidate algorithms and 
experimentation. This includes identifying the parameters and 
algorithm choices to be adopted and removing candidate algo-
rithms that did not yield the desired properties or performance.

Key to this phase is modularization to isolate the inference 
module of the code from the remaining code. Inference modules 
are the components of the code relating to the forward passing of 
the test or previously unseen data as input through to the output of 
the ML subsystem. Inference refers to the forward pass execution 
of the subsystem, the module of the code that accepts the raw data 
as input and provides the output. This excludes any function 

relating to validating the output against the ground truth, or code 
involved with altering the model parameters or hyperparameters.

ML algorithms are typically developed in development environ-
ments tailored to support training, experimentation, and hyperpa-
rameter tuning. These environments are not always consistent with 
the deployment requirements, in which case porting the code and 
trained ML models to a runtime environment is required, along with 
the appropriate code review, veri� cation, and testing. If necessary, 
the minimum amount of code that requires porting to the runtime 
environment is the inference portion. Integration also requires the 
speci� cation and implementation of the interface between the ML 
subsystem and overarching IT system. 

Similar to the inference, components of the pipeline perfor-
mance evaluation exist in the training codebase. However, this 
needs to be implemented as a full pipeline performance evalua-
tion, with the possibly to port it to a more suitable development 
and/or runtime environment.

Acceptance and release
The final infrastructure for release, maintenance, and perfor-
mance veri� cation of the ML subsystem is developed during this 
phase. Processes relating to the development, release, and mainte-
nance of the subsystem is de� ned to specify if, how, and when the 
functions of developing ML algorithms are veri� ed. Choices must 
be made as to whether the training and possibly tuning of the ML 
models are included in these processes. For example, it may be 
decided to run the complete model training, hyperparameter tun-
ing, and model performance on the test data at regular instances 
to verify functions of the code. Alternatively, it may be deemed 
that the model training and hyperparameter tuning are not part of 
the core code or infrastructure, and are excluded from the veri� -
cation process. At a minimum the process should specify, and 
appropriately document, how verification of the ML subsystem 
shall be performed. The execution of such processes should result 
in the release of the � rst version of the ML subsystem.

As with other software system 
development, ML development 
has business, technical, 
and project risk activities 
commensurate with the 
complexity and novelty of 
the system. 
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Operation Phase
During this phase, the ML subsystem is continuously monitored 
and maintained. This may involve automation to alert if results 
deviate from predetermined limits, or may involve manual moni-
toring, or a combination. Performance monitoring may result in 
required changes affecting the subsystem. This is where the 
maintenance and performance evaluation processes need to be 
robust and su�  cient to support the retraining and adoption of an 
alternative ML model(s). Such changes must be made in adherence 
with the organization’s change management process, leveraging 
risk-based evaluation(s) considering the change’s impact to cur-
rent and future production data.

A typical request might be that the system is poor at generaliz-
ing to a specific subclass of input data. A typical solution is to 
acquire and integrate data of this subclass into the training data-
set. The integration of additional training data must be systematic 
in that every change in the performance is measured, validated, 
and understood. For example, upon acquiring the additional data, 
a portion of it could be assigned to the training set and the rest 
excluded from all model training activities. Model training would 
proceed with the augmented training data set with the realization 
that the additional subclass of data may result in an overall drop in 
performance due to the inclusion of more challenging data. Once 
trained, tested, and tuned, performance of the revised model 
should be staged by initially executing the evaluation processes 
with the original model on the augmented test data set with an 
expectation that the performance may drop because of the 
increased challenge. Then, execution of the evaluation process 
with the revised model will take place with the expectation that 
the performance measures achieve the desired acceptable level.

It can be seen from this example that operation and mainte-
nance of the system and ML subsystem are themselves iterative 
processes that follow the train-test-tune cycle of the original 
development effort, with appropriate management of new data 

through defined data governance and continued performance 
evaluation.

Case Study
This case study describes the development of an application for 
chair-side analysis of dental bitewing X-rays. Bitewings X-rays 
typically show both upper and lower teeth, including the root on 
the le�  or right side of the mouth. They are used as an aid to diag-
nose and monitor several conditions such as gum disease and 
cavities between teeth. The bitewing X-ray is taken by placing a 
sensor inside the mouth between the teeth and tongue, and point-
ing an X-ray source from the outside of the mouth. The sensor is 
then removed and digita lly scanned to provide an image. 
Radiographic examinations can increase the number of carious 
lesions that are detected over those that would be detectable by 
clinical examination alone; this use is recommended by the UK 
Department of Health in the FGDP (UK) guideline document [4]. 
Nevertheless, systematic reviews have consistently reported poor 
diagnostic sensitivity of only 37% for radiographic detection of 
demineralization by dentists [5].

“The purpose of the product is to detect the early stages of 
tooth decay, known clinically as caries. Early caries are indicated 
by subtle changes in the appearance of the outer enamel surface of 
the tooth in bitewing x-rays. These small changes are challenging 
to detect, particularly given poor lighting conditions and time 
pressures present in a working dental practice. Not finding 
early-stage caries is a missed opportunity for using preventative 
treatments, such as interdental cleaning and resin infiltration, 
and is likely to lead to further decay and the need for restorative 
treatments such as drilling and in� ltration” [6].

The product deploys a series of algorithms to analyze bitewing 
for early decay and highlights areas that merit a closer look by the 
dentist arrows indicated regions where the AI has detected image 
biomarkers that are indicative of early caries. Control in the graph-
ical user interface allow dentists to move, delete or add arrows [3].

The product is provided in multiple forms: as a stand-alone 
application, integrated into the dentist’s existing image manage-
ment software, or a web-hosted analysis service. Under the EU 
Medical Device Directive [7], it is registered as So� ware as a Medical 
Device of class 1 safety to be used by quali� ed dentist practitioners 
to aid in the diagnosis of early enamel-only caries. The product is 
developed and released according to ISO 13485 standards.

The business opportunities and health benefits for an early 
caries detector are in minimal-intervention or minimal-invasive 
dentistry. This is a pioneering approach to dentistry where early 
preventive actions are favored to preempt and minimize the use of 
traditional drill and � ll treatments. Thus, instead of waiting until 
the caries or decay has penetrated deeper into the tooth to merit 
drilling, the disease is detected early when decay is limited to the 
outer enamel surface, so it can be repaired by noninvasive treat-
ments such as high-� uoride toothpaste or a hygienist visit [8]. 

The product’s functional requirements were formulated to 
describe an assistive tool that highlights evidence of decay for 

Figure 2: The product’s graphical user interface [3]. 
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be� er-informed decisions on diagnosis and treatment paths. An 
assistive diagnosis function was chosen to dovetail into the den-
tist’s existing work path. The assistive nature also had regulatory 
safety class implications in that the product can only be used by 
trained clinicians who are always given the � nal decision on diag-
nosis and treatment path. A key requirement for the product was 
that it provided clear indications to allow the clinician to make 
better-informed decisions but did not attempt to get in the way, 
otherwise interfere with, or replace the clinician’s actions. 

The product was also required to � t seamlessly into the den-
tist’s clinical workflow. Once the need for a bitewing had been 
identified, the workflow involved acquiring a pair of bitewings, 
one for each side of the mouth, and analyzing the X-ray immedi-
ately on their chair-side computer so that patients could be 
informed of the chosen treatment path immediately. Note: 
Typically, dentists have only a short time to analyze each bitewing 
during which time they look for a range of conditions in addition to 
early caries. To this end, a fully automated analysis was required 
that highlighted regions of the bitewing that were early caries.

Nonfunctional requirements included working on a chair-side 
computer, usually a PC without specialist hardware or reliance on 
an internet connection. The analysis time also needed to be fast 
and not add to the dentist’s current image analysis and clinical 
reporting time of 20 seconds.

Regarding caries detection performance, previous research 
demonstrated that general practice dentists detect approximately 
40% of early caries [9, 10]. The performance objective was to 
increase detection rate without an unacceptable increase in false 
detections (i.e., false positives). False detections are undesirable, 
but since treatment paths are noninvasive, they were not harmful 
to patients.

A comprehensive search for relevant literature and published 
material on technologies relating to image analysis of dental bite-
wings was performed, with focus on evidence of implementation 
and performance. This yielded information on the application of 
deep learning algorithms to the analysis of dental images, but 
there were no published case data on bitewings. The lack of a sig-
ni� cant published data set indicated the need for data acquisition 
to be conducted as part of the project, and thus a requirement that 
the ML algorithms used should not need a large sample size to 
generate a predictive model with suitable accuracy. 

A task was undertaken to acquire an initial set of data which 
consisted of 130 bitewings collected from a single site (i.e., dental 
office/practice), selected to have higher prevalence of proximal 
caries. At the onset of the project, it was decided that for general 
dental practitioners to gain maximum bene� t, the product would 
have to mimic the analysis of experts in dental bitewings. 
(Maxillofacial radiologists are the clinical experts in analyzing 
dental medical images and are adept at � nding early enamel-only 
proximal caries in bitewings and distinguishing them from other 
pathologies or image artifacts .) To this end, � ve dento-maxillofacial 
radiologists were recruited; each one analyzed every image and 
recorded the location of proximal caries together with the severity 

of the caries on an internationally recognized four-point grading 
scale. Consolidation of the experts’ analyses provided a single 
“gold standard” data set.

Due to the challenge of � nding small pathologies in X-rays, the 
ML subsystem was designed as a pipeline of algorithms to utilize 
the larger features of the images. This prototype formed the back-
bone of a simple, interactive product demo, which allowed busi-
ness collaborators and potential customers to provide images of 
their own as inputs and evaluate the results. This provided valua-
ble user feedback to guide subsequent development. It also 
demonstrated the need for the solution to be generic to images 
from all acquisition hardware, hence the need for the project to 
collect general practice data (which occurred during the project/
production phase).

The prototype performance report contained detailed descrip-
tions of the training and evaluation methods together with all 
experiments executed with quantitative performance measures 
and qualitative evaluations, including illustrations of the failure 
modes. This report also included a considered prediction of the 
performance of the product. (Intellectual property analysis deter-
mined the freedom to operate and identify novel IP to be consid-
ered for protection.)

Results from the prototype demonstrated that the algorithm 
performed poorly on X-rays collected from other sites. A subse-
quent ethically approved clinical data collection project was initi-
ated to collect images from 10 general dental practices and have 
them annotated by a panel of maxillofacial radiologists. Once col-
lected and annotated, a test set consisting of 20% of the images 
was selected by random selection, stratified over the  sites that 
were excluded from all training and validation of the models and 
evaluation of the pipeline to provide the unbiased data set for 
evaluation of the � nal ML subsystem and end product. 

Based on the prototype experiments, the ML subsystem 
design in the case study consisted of three distinct components: 
(a) pa� ern recognition tooth detector; (b) identi� cation of a super-
set of candidate locations of caries by dynamic programming; and 
(c) deep learning model for classi� cation of candidates as either 
early caries or other. Risk analysis of these components identi� ed 
the � nal stage as being the highest risk due to the more innovative 
approach of using neural networks compared to pa� ern matching 
and the potential need for a large training data set to ensure 

This case study describes the 
development of an application 
for chair-side analysis of dental 
bitewing X-rays. 
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su�  cient detection performance. To this end, mitigating strate-
gies were developed, such as identifying less data-hungry alterna-
tive classi� ers or acquiring additional data.

The tooth detector and caries classifier both contained ML 
models, but for brevity we describe the planning for the � nal com-
ponent: the deep learning classifier. The Python language and 
development environment was chosen to develop the deep learn-
ing classi� er due to its support for rapid prototyping of ML models 
and availability of third party, convolutional neural network sup-
port libraries.

The data format was speci� ed for each component. Focusing 
on the � nal component, the input was a set of candidate locations 
along the proximal tooth edges generated by the preceding com-
ponent as indicative of caries, with the output speci� ed as a proba-
bility of measure for whether a candidate is classi� ed as having 
caries. These candidate locations and con� dence measures could 
be evaluated by comparing them to the expert gold standard of 
caries annotations. The model’s output was classi� ed as true posi-
tives if they resided on the same proximal edge as an expert’s car-
ies annotation within a distance tolerance. This allowed for the 
construction of a receiver operator characteristic (ROC) curve 
accumulated for all candidate locations and for all potential 
threshold values, with the area under the curve (AUC) used as the 
principal performance metric for evaluating and comparing 
model performances.

For the task of object detection of early caries on the proximal 
edges of teeth, two candidate machine learning algorithms were 
identified: (a) random forest classification and (b) deep learning 
classi� er. 

Both required input data as a set of candidate locations along 
the surface edge. Ground truth data consisted of a classi� cation if 
each point was non-carious or carious with a subsequent subclas-
si� cation of carious regions as being enamel caries (i.e., caries that 
had only penetrated the outer enamel of the tooth) or dentine car-
ies (i.e., caries that had progressed further into the tooth dentine). 
The performance metric was determined as the area under the 
ROC curve for the classi� cation of enamel caries.

Model development followed the regular ML life cycle of itera-
tive training, testing, evaluation, and hyperparameter tuning. 
Five-fold cross-validation stratified over the image source sites 
was used to divide the data into training and validation data sets. 
The approach for hyperparameter tuning involving careful 
recording of hyperparameters and results for each iteration was to 
manually identify the changes that had a positive effect on the 
performance and tweak the parameters accordingly for the next 
iteration, comparing performance metrics and performing quali-
tative evaluation of the results.

As the experiments progressed, it became evident that the 
deep learning classi� er solution o� ered superior performance to 
the random forest classi� cation and focus turned to choosing the 
best hyperparameters for that model.

The product speci� cation required running the product on a 
regular PC without internet connection or bespoke hardware or 

additional so� ware. To ful� ll this nonfunctional requirement, the 
inference module of the ML subcomponent developed in Python 
was ported to C++ components of pipeline augmented with .net 
API.  It excludes all modules related to evaluation, model training, 
and hyperparameter tuning. Deep learning models were ported 
from Python (TensorFlow) to ONNX format and runtime inference 
code written in C# using Microsoft ML support libraries. All 
design, maintenance, and release activities of the product were 
audited against ISO 13485 standards.

For the product, in addition to the inference module, code to 
validate the performance of the runtime inference was ported to 
the build and test pipeline environments. This enabled automated 
testing and validation of the model performance during the code 
build cycle. A design decision was made to develop a fully inte-
grated performance evaluation reporting into the testing and 
release process. The interface was augmented with the ability to 
supply test images and compare the results with the gold standard 
annotations. Selenium UI testing was used to drive the tests which 
were integrated and automated in the testing components of the 
release pipeline. Model training and hyperparameter tuning 
functions were not considered core to the product and were 
excluded from the so� ware maintenance and performance vali-
dation processes. 

To provide additional validation of the product’s performance, 
an ethically approved clinical study to investigate whether the 
ability of dentists to detect enamel-only proximal caries was 
enhanced using the product. The study reported that dentists 
using the product found 75.8% of the early caries compared with 
only a 44.3% detection rate for dentists using the bitewing X-ray 
image without AI assistance, a statistically signi� cant increase in 
sensitivity of 71% [3].

During the study and subsequent early adopter usage, the 
need to train and educate users to gain maximum bene� t from the 
product became evident. This type of interactive AI system, where 
the clinician is an integral part of the AI work� ow loop, requires 
the human to examine the regions of interest suggested by the AI 
system but not blindly accept them as truth. Instead, users applied 
their clinical knowledge and judgment when making diagnostic 
decisions. Training material was produced to present users with 
the speci� city and sensitivity performance measures of the prod-
uct and discussions on how to best interpret the output to enable 
dentists to make better diagnosis and treatment decisions for 
their patients.

CONCLUSION
This article explored life-cycle activities for ML components or 
subsystems in regulated life sciences using an example of a 
SaMD product. It has illustrated the life cycle and management 
of the ML subsystem or components within a wider system or 
application life cycle. Such usage of ML is occurring throughout 
the pharmaceutical life cycle from drug discovery and clinical 
development, to post-licensure product surveillance and real-
world data analytics.   
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