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CONTINUED PROCESS 
VERIFICATION IN STAGES 1–3:
Multivariate Data Modeling Using 
Design Space and Monte Carlo
By Zuwei Jin

Continued process verifi cation (CPV) as defi ned 
in the US FDA process validation guideline [1] 
helps bring quality management and compliance 
in the pharmaceutical industry to the next level, 
but it has been challenging to implement in 
practice. This article describes an approach for 
implementing CPV through the core concept 
of design space based on online multivariate 
data analysis (MVDA) and Monte Carlo random 
simulation. 

The approach can use virtually any kind of data source to build 
the design space, including � rst-principle dynamical models, 
design of experiment (DOE) models, clinical trial batches 
during process performance quali� cation (PPQ), and histori-

cal batches in a production historian. This approach can provide a 
smooth transition from the research and development (R&D) 
� rst-principle model to the permanent CPV program for commer-
cial production throughout the drug development cycle. 

The FDA recommends a three-stage approach to process vali-
dation. As the US pharmaceutical industry regulator, the FDA has 
been driving science- and risk-based approaches for almost a dec-
ade through documents such as the process validation guidance 
published in 2011 [1]. The guidance fundamentally a� ects process 
development, engineering practice, and commercial production 
for drug substances and drug products. A new commercial manu-
facturing process should go through stage 1, process design; stage 2, 
process quali� cation; and stage 3, CPV. Whereas stage 2 retains 
most procedural elements from traditional quali� cation and vali-
dation (such as installation quali� cation, operational quali� ca-
tion, performance quali� cation, and process validation), stages 1 
and 3 involve many science-, risk-, and statistics-based approaches, 

such as risk assessment, DOE, statistical process control (SPC), and 
processing capability (Cpk) evaluation. The FDA now recommends 
stage 3 for all commercial processes because it provides the ulti-
mate evidence that a process is running under a state of control.

The FDA’s process validation guidance [1] also emphasizes sta-
tistics. Sponsors are encouraged to identify critical process param-
eters (CPP) and critical quality attributes (CQA) through risk 
assessment according to the quality target product pro� le (QTPP) 
and evaluate them using statistical approaches such as DOE early 
in stage 1. The historical standard of three consecutive batches 
may no longer be sufficient for chemistry, manufacturing, and 
controls (CMC) submission. The FDA is now considering the entire 
drug development approach, how much product and process 
understanding the drug manufacturer has demonstrated, and 
statistical evidence that the process is running as designed and in 
a state of control. Including CPV as part of CMC submission is 
therefore highly recommended.

CPV is now included as part of annual product review. SPC 
charts and Cpk analysis are the most common tools used in
current CPV programs. They are univariate methods and are 
usually used after batch completion. SPC charts for quality 
attributes are usually used to evaluate processing capability and 
may also be used to assess control capability for speci� c process 
parameters. Cpk analysis evaluates control system capability by 
monitoring variation of the process parameters. From a statistics 
standpoint, far more than three batches will usually be needed to 
su�  ciently analyze process capability of both process parame-
ters and quality attributes. Therefore, a CPV program using uni-
variate tools would usually not be established until phase 3 com-
mercial production.

Because of its complete statistical analysis capability, MVDA is 
sometimes used to better understand the correlations between the 
CQAs and CPPs in place of SPC and Cpk. Such analysis would, 
however, still have to be done after batch completion, and exten-
sive modeling and computation would usually be involved. The 
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obvious advantage of MVDA is its ability to count the interactions 
between multiple process parameters that a univariate approach 
would fail to detect.

In following sections, an online MVDA–based approach is 
introduced to allow CPV to be planned as early as stage 1; this 
approach can make CPV an integral part of process validation 
throughout stages 1, 2, and 3. It provides not only the ability to sta-
tistically evaluate the correlation between the CQAs and CPPs but 
also the ability to detect process fault and predict CQAs in real 
time.

ONLINE MVDA 
Online MVDA is a relatively new data analytics technology that 
can be used for CPV. Online MVDA is based on the traditional 
MVDA methodology and a batch simulation scanning concept. 
Before we discuss the challenges of implementing CPV for the 
entire drug development cycle, let us briefly review how online 
MVDA can be achieved.

Batch Simulation Using MVDA
MVDA is a powerful improvement to the current univariate approach 
in CPV and is recommended by many industrial experts [2]. Primary 
component analysis (PCA) and projected latent structure (PLS) in 
MVDA are highly recommended in data analysis. With modern 
computing power and iterative PCA/PLS algorithms, both enu-
merative and analytical statistics can now be achieved e�  ciently 
online in real time.

How can MVDA be used for a batch process, which is dynamic 
and can’t be directly analyzed with MVDA?

MVDA is complicated with its high number of dimensions, but 
batch simulation is complicated in its own way because of its 
dynamic nature. Batch simulation using MVDA requires an addi-
tional concept or data structure. Such a data structure would allow 
for su�  cient description of any batch process in a time-evolving 
fashion. In practice, MVDA modeling for batch would involve 
scanning a batch process into many frames over the batch duration 
(Figure 1). These frames are called statistical scans. The statistical 
scan averages the process conditions between two nearby frames. 
A batch process can be represented by many statistical scans that 
are sometimes separated into several groups called stages [3].

Within the stages, statistical scans may need to be appropri-
ately aligned from batch to batch. One of the challenges of batch 
simulation is that batches may be of different durations and 
pauses/holds may occur during them; therefore, the alignment of 
statistical scans can’t be based on time only. A well-accepted 
approach to addressing this challenge is an algorithm called 
dynamic time warping (DTW). DTW is an optimization that looks 
not only at the time but also the physical characteristics—such as 
process parameters—of a batch process to determine the align-
ment of the statistical scans [4].

Batch MVDA models contain hundreds of MVDA models that 
are lined up at different time frames in the scanning structure. 
The amount of modeling in a batch simulation is a hundred times 

greater than what would usually be modeled in an R&D project. 
Batch simulation with MVDA is not be feasible without an auto-
mated platform. 

Automating MVDA 
MVDA can be fully automated online to provide real-time analysis 
thanks to the modern computing power of servers, the standardi-
zation of plant models as de� ned in ANSI/International Society of 
Automation (ISA) Standard S88 [5], and digitization of almost all 
process parameters and initial conditions. Algorithms such as 
NIPALS, which is an iterative decomposition algorithm for matrix 
data, make PCA/PLS an effective online method for analyzing 
large amounts of data and building MVDA models. 

Another important foundational piece of online MVDA is the 
algorithm to align statistical scans from batches of di� erent dura-
tions. One of the most popular approaches is to use DTW, which 
takes a certain number of adjacent statistical scans into considera-
tion during alignment. MVDA models can therefore be generated 
automatically from historical data in manner similar to the way 
Google performs an internet search.

Online MVDA is an integrated part of many common process 
control systems, such as distributed control system (DCS). An online 
MVDA platform positioned on top of historians includes a model 
builder, an analytics server, and a monitoring server (Figure 2). The 
model builder builds MVDA models from historical data. The 
monitoring server uses appropriate MVDA models to evaluate the 
actual performance of a real-time process and predict batch qual-
ity. The online MVDA platform sits on top of a process control sys-
tem at level 2.5 or 3 in the ISA S95 hierarchy.

Online MVDA incorporates built-in model-building tools such 
as PCA and PLS as well as a real-time monitoring server based on 
the ISA S88 structure to provide the capability to detect faults and 
predict quality in real time. The fault detection and quality predic-
tion windows are essentially the automated form of CPV, continu-
ously measuring real-time process against the design space. 

Number Of Batches (I)

External Initial Conditions

  F  igure 1: Batch simulation using MVDA.
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Compared to traditional biplots in PCA, normalized T2 and Q 
(between 0 and 1) are a more statistically robust method to identify 
irregularity and ensure a process is running under a state of con-
trol. In addition to providing enumerative statistics such as those 
used in CPV, online MVDA provides real-time monitoring func-
tions such as process fault detection and batch final quality 
prediction. 

In Figure 2, the middle window on the right illustrates how 
the monitoring service performs statistical tests on process 
parameters, speci� cally on T2 and Q based on PCA. Statistically 
improbable behavior will be called out. Specific contributions 
from different process parameters can be further investigated 
from the same window by clicking the process parameter contri-
bution on the left. The bottom window on the right shows the 
quality prediction (middle line) for the real-time batch. The top 
and bottom lines represent the upper and lower limits, respec-
tively, of the prediction, all at 95% con� dence level. Operators 
may be trained with standard operating procedures to use the 
fault detection and quality prediction tools to intervene in the 
process when required.

IMPLEMENTATION CHALLENGES
Figure 3 shows the landscape of process simulation and current 
CPV practice in the pharmaceutical industry. Implementation of a 
golden (i.e., ideal) batch pro� le is desirable to comply with industry 
regulations and achieve operational excellence. The challenge, 
however, has been the disconnect between the dynamic nature of 
the R&D � rst-principle model, the statistical nature of DOE design 
space, and the actual discrete data from real-time processes. Most 
of the current control platforms do not allow the manufacturer to 

set a golden batch pro� le as the background for batch operations, 
particularly at process start-up. In the case where a golden batch 
pro� le with standard deviation can be provided by the historian, 
such monitoring is usually univariate and not statistically mean-
ingful enough to detect fault or predict quality.

Design space is the common thread that connects all these 
pieces together, but there has been no common form for represent-
ing it from stage to stage. The pharmaceutical industry generally 
lacks platforms that can fully integrate R&D, technology transfer, 
clinical manufacturing, commercial operations, regulatory com-
pliance, and manufacturing intelligence. 

The online MVDA model has been successful with production 
monitoring, but implementing it for CPV throughout the phases is 
challenging. It takes far more than three actual batches to build an 
MVDA model through PCA/PLS; therefore, MVDA historically 
could not be used in early stages because there were not enough 
batches. Furthermore, the R&D DOE design space and � rst-principle 
mechanistic models early in process development can’t be directly 
used for building the MVDA model because such equations can’t 
be included in an MVDA platform. Most MVDA online platforms 
do not take in loose data or equations for model-building. Thus, 
CPV in current practice is mostly SPC charting and quality param-
eter trending at clinical phase 3 and commercial phase 4, and is 
completely disconnected from earlier stages.

IMPLEMENTING DESIGN SPACE USING MONTE 
CARLO SIMULATION
An application of Monte Carlo simulation and open data sources 
for MVDA model-building can bridge the gaps discussed previ-
ously. It allows online MVDA to be a solution throughout the entire 

Fi gure 2: Online MVDA architecture.
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drug development cycle from process development to commercial 
production, and that solution is applicable to the entire plant [6].

Although batch history data are highly structured in the histo-
rian, they can also be randomly simulated as new batches within 
the design space. With a Monte Carlo simulation framework, the 
design space and a reference batch can be used to construct as 
many batches as desired. The parameters required in the Monte 
Carlo simulation are the approved parameter range, the parameter 
control capability, and a reference batch. 

The simulated batches are initially used to build the MVDA 
model and gradually replaced with real batches from commercial 
production to rebuild the model. In this way, the MVDA model 
improves over time. CPV can be achieved when all simulated 
batches are replaced with real batches.

Allowing the use of open data sources means that the model 
de� nition can be de� ned not only through the batch historian but 
also through ISA S88 hierarchy exported from a DCS or other 

control systems, separate batch data � les, and batch event � les. 
This means third-party historians and even data from a � rst-prin-
ciple mechanistic model can all be used for MVDA model-building 
on such platforms. 

The way to implement a � rst-principle or DOE model for pro-
duction is not to take in the equations directly but to take in a suf-
� cient amount of data from the DOE or � rst-principle equations for 
the MVDA model to learn. When a process is transferred from one 
phase to the next, the design space may have to be transferred 
using Monte Carlo simulation with an open data source because 
the process will be built anew at a di� erent scale (see Figure 4). 

With the Monte Carlo capability and the open interface in 
building batch context, any golden batch profile or DOE design 
space—regardless of where it came from—can be implemented as 
an MVDA model for process monitoring. Figure 5 shows how an 
MVDA model may be constructed and deployed using the Monte 
Carlo method and an open data source.
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Fig ure 3: Disconnects in current technology transfer practice.

Figu re 4: Implementing design space through stages 1, 2, and 3 for CPV.
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The MVDA model in this case can be built from the historian, 
the DOE models, or � rst-principle models. If simulated batches are 
needed for model-building, Monte Carlo simulation must be per-
formed to generate such batches before a complete MVDA model 
can be assembled. Process parameters and quality attributes must 
then be de� ned for the batch, and PCA/PLS are run to generate the 
speci� c characteristics of the MVDA model, such as eigenvalues, 
loading, and scores. The MVDA model can then be deployed to the 
specific control platform for real-time monitoring. This effort 
must be coordinated with plant automation. As shown in Figure 5, 

the foundation for MVDA model deployment and model-building 
is data connectivity within the plant.

IMPLE MENTING ONLINE MVDA FOR THE ENTIRE PLANT
From a business standpoint, implementation of online MVDA 
involves two challenges: First, the manufacturer wants to � nd an 
analytics solution for the entire plant, if not the entire enterprise. 
Second, the solution should function not only as an operation 
support tool but also as a manufacturing intelligence tool that 
supports business decisions.

Figur e 5: MVDA model-building with Monte Carlo simulation and open data sources.
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Thanks to the Open Platform Communications (OPC) connec-
tivity standard, the MVDA online platform can be applied to all 
control systems in a plant. Most modern control systems have 
open connectivity, such as OPC, which can allow the control sys-
tem to have virtual batches in the MVDA online platform; those 
virtual batches can then be monitored just like regular batches by 
online MVDA solutions.

MVDA models can be built for a speci� c product on a speci� c 
unit. The MVDA online platform can therefore be used for multiple 
products on nondesignated equipment.

MVDA can be a powerful tool for both operations and business 
decisions. MVDA analytics can be used for decision support, man-
ufacturing intelligence, or quality assurance for business 
improvement. Most MVDA online platforms have the capability to 
work across different domains and can be configured through 
network � rewalls. 

IMPLEMENTATION COST OF ONLINE MVDA
An MVDA online in a production environment is generally 
assumed to be expensive because of MVDA licensing costs and the 
complexity of project implementation. Although online MVDA is 
by far one of the most powerful analytics tools available, the 
threshold for adopting it is still high. 

A Community  
of Experts
Direct access to a global network 
of like-minded experts, through 
the ISPE Member Directory and 
our newly relaunched online 
community portal, Community 
Connection.

Affiliates and 
Chapters
Get involved with your local 
Affiliate or Chapter to meet 
local industry peers, volunteer 
your time, and mentor Young 
Professionals and Students.

Benefits of Membership
Network with more than 17,500 members in 90+ countries to gain industry knowledge, learn best practices, connect with 

peers, and advance your career with the largest not-for-proft association in the pharmaceutical industry. ISPE.org/Join.

Guidance 
Documents
ISPE Guidance Documents 
are the gold-standard in the 
industry. Members save 60% off 
nonmember prices, and enjoy 
FREE online access to select 
ISPE Good Practice Guides.

Currently excludes GAMP® and 
Baseline® Guides

Educational 
Webinars
Enjoy unlimited access to 
ISPE’s complimentary Pharma 
Best Practices Webinar Series 
featuring leading subject 
matter experts covering critical, 
relevant topics in pharmaceutical 
manufacturing.

Implementing MVDA throughout a drug development pipeline 
requires long-term collaboration among experts in operations, 
process engineering, automation, statistics, data sciences, and 
information technology (IT). For example, experts in IT must help 
with data connectivity, and model-building requires process-
modeling and statistics knowledge. 

MVDA analytics can be 
used for decision support, 
manufacturing intelligence, or 
quality assurance for business 
improvement.
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Figure  6: An example of a golden batch profi le implementation through MVDA modeling.

Figure 7 : Real-time monitoring of the batch process using an MVDA model.
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Online MVDA licensing costs may vary significantly from 
vendor to vendor. Some MVDA online solutions have been highly 
integrated with a particular control system, which could reduce 
the implementation threshold for that control platform; how-
ever, integration with third-party control systems may be 
di�  cult. 

CASE STUDY
Figure 6 shows a golden pro� le/MVDA model built from a refer-
ence batch and a design space. This ideal batch pro� le is an active 
statistical model simultaneously used for statistical evaluations of 
the actual running batch based on T2 and Q, as explained previ-
ously. When the running batch is not performing normally, T2 and 
Q will signal that issue by showing the values moving out of the 
green area. 

A production process, 5K bioreactor cell culture batch, in a 
large US pharmaceutical manufacturer’s facility was used as a 
proof of concept for this approach to implementing design space 
using Monte Carlo simulation. Simulated batches were generated 
using the Monte Carlo method based on reference historical data 
from an IP21 historian and a design space available from earlier 
development work. 

The simulated batches were then used to build an MVDA 
model, which included 26 process parameters as the process input 
and three quality attributes as output. The model was then suc-
cessfully deployed for online real-time monitoring in production. 
The monitoring results are shown in Figure 7.

The MVDA statistical model calculates T2 and Q on a periodic 
basis to monitor real-time batch processes. Essentially, the real-
time batch is being constantly measured against its design space, 
which is represented by the MVDA model built through Monte 
Carlo simulated batches.

The top windows in Figure 7 show T2 and Q for fault detection 
of the process conditions. The bottom window shows the conven-
tional univariate golden pro� le or historical behavior for one of 
the selected process parameters. T2 and Q statistics plus the uni-
variate golden pro� les are the design space of the process, which 
can then be used to measure the running batch in real time.

As more batches are completed, the MVDA model is rebuilt 
with the new batch history data as part of the training or testing 
batch data set. This rebuilding process continues until all simu-
lated batches are replaced with real batch history data.

CONCLUSION
Online MVDA is emerging as the solution for CPV throughout the 
drug development cycle, connecting stages 1, 2, and 3 and allowing 
CPV to be included early in the drug development life cycle. 

Design space is the common thread that connects stages 1, 2, 
and 3 in process validation. MVDA modeling with Monte Carlo 
simulation and an open data source for model-building is one 
of the approaches moving the design space of the drug-making 
process from stage to stage and from phase to phase to achieve 
CPV, as the FDA recommends in its process validation guidance. 

Although equations from � rst-principle and DOE models can’t 
be used by an MVDA platform, first-principle models and DOE 
design space can be used to provide the data that the MVDA model 
builder uses to learn about the design space of the � rst-principle or 
DOE model.

The online MVDA solution is particularly suited for handling 
large amounts and complicated sets of data in plantwide applica-
tions, and it can be applied to di� erent control platforms with OPC 
connectivity. Analytics by online MVDA can support not only 
operations but also quality assurance, compliance, and manufac-
turing intelligence. 

Online MVDA can be used for CPV throughout the drug devel-
opment cycle, connecting validation stages 1, 2, and 3. It is arguably 
the future direction of process monitoring in the pharmaceutical 
industry.  
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